

Part of Croda International Plc

Presented by **Stefan Bill** Managing Director REWITEC GmbH 27/05/2021 Lifetime extension and efficiency improvement of tribosystems by layer-silicatebased additive technology

Agenda

- ⇒Company and products
- ⇒Technology
- ⇒Scientific tests
- ⇒Examples of application
- Gearbox and bearing lifetime calculation
- ⇒Conclusion

The challenges of unscheduled maintenance costs remain

Calculation mistakes, environmental conditions, missing or even wrong maintenance can cause unforeseen breakdowns

Maintenance represents 25 % of the total wind turbine cost over its lifetime

Unscheduled maintenance represents **30 - 60 %** of total maintenance costs

Average cost to repair a gearbox failure is **380,000 \$**

Typical damage to gears & bearings

Smart science to improve lives[™]

Company and products

CRODA

Smart science to improve lives[™]

Key facts about REWITEC

- ⇒ Founded in 2003
- Close cooperation with universities and research institutes
- Supported by the German Government
- ⇒ Patents in Europe, China, USA
- ⇒ Acquisition by CRODA in 2019

About Croda

⇒Manufacturer of high-performance ingredients and technologies: development, production and distribution of speciality chemicals.

Target markets

⇒ Wind energy⇒ Onshore⇒ Offshore

*⇒*Industry

- ⇒ Steel
- ⇒ Mining
- ⇒ Oil, Gas

⇒ Marine

- ⇒ Shipping
- ⇒ Barges
- ⇒ Yachts

- *⇒* Automotive

 - ⇒ OEM

<u>CRODA</u>

REWITEC Products

⇒ Over 3,000 successfully treated wind turbines globally

REWITEC technology

Smart science to improve lives™

Phyllosilicate based particle additive

- ⇒ Platelet-shaped particles with layered crystal structure
 - ⇒ Si-O and Al-O based layers
 - ⇒ Strong *covalent* bonds within the layer
 - ⇒ Weak *van der Waals* interaction between the layers
- ⇒ Easy shearing between the layers
 - ⇒ Friction reduction
- ⇒ Big specific area with high adsorption ability
 - ⇒ covering the surface, filling the holes
 - ⇒ Protective, repairing and smoothing effect
- ⇒ Particle size d90 = 4 µm
- Soft material: Mohs Hardness Scale 2.5 (like fingernail!)

Our scientific paper:

- "Tribological properties of a phyllosilicate based microparticle oil additive"
- Chizhik et al., Wear 426–427 (2019) 835–844

How REWITEC works

Significant reduction of friction, wear, roughness and temperature

⇒Advantages:

- ⇒ Compatibility to all common lubricants
- ⇒ Temperature independent
- No chemical interactions with other lubricant parts
- ⇒ Low dosage

Scientific tests

Smart science to improve lives[™]

14

2-Disc assembly rolling wear test – gear oils

- ⇒ Stress value:
- Rotating speed:
- ➡ Temperature:
- ⇒ Friction coefficient:

- 1 GPa (normal force 2150 N) 424 rpm / 339 rpm, slip 20 % 39,3 h
- oil inlet temperature 60 °C
- µ=normal force/friction force

Castrol Optigear Synthetic X320

Smart science to improve lives™

Oil	Friction reduction	Roughness reduction
Castrol Optigear Synthetic X320	33 %	41 %
Mobilgear SHC XMP 320	35 %	44 %
Klübersynth GEM 4-320N	40 %	54 %
Fuchs Unisyn CLP 320	36 %	50 %
Amsoil PTN 320	46 %	18 %
Shell Omala S4 GX 320	42 %	25 %
Klüberbio EG 2-150	55 %	40 %
Fuchs Pentosin EG FFL-7A	41 %	35 %
Automotive racing gear oil	55 %	40 %

SRV – FZG simulation

Temperature:	98°C
Frequency:	50 Hz
Stroke Length :	4 mm

Testing concept for gear oils

Step tests with modified parameters

Hertzian surface pressure	FZG load step	SRV® normal force
146	1	7
295	2	28
474	3	73
621	4	126
773	5	195
929	6	282
1080	7	381
1223	8	489
1386	9	628
1539	10	774
1691	11	934
1841	12	1107
2040	13	1360
2170	14	1538
SRVD Technology Platform	10	Excellence in Tribology

Castrol X320

Castrol X320 + Rewitec

🗕 Load

⇒ 12 % wear reduction with REWITEC⇒ Up to 30 % friction reduction with REWITEC

Smart science to improve lives™

FE-8 roller bearing test

⇒ Speed:	7.5 rpm
	80 h
⇒ Temperature:	80°C
⇒ Load:	80 kN

Advantages with REWITEC:

- \Rightarrow 17 % less wear
- ⇒ Smoother surface
- Better load distribution
- ⇒ Protection for rolling elements and rings

and Energy

Castrol X320

Castrol X320 with **REWITEC**[®]

4 Ball test bench – grease test

According to DIN 51350 part 2 (welding force)/3 (wear test):

Test load: Rotating speed: Test-duration: 2000 – 12000 N / 300 N 1450 rpm 1 min / 60 min

Test Rig	Test Method	Lubricant	Non Seizure Load [N]	Weld Load [N]	Wear Scar [mm]
	Weld Load DIN 51350 Part 2	Mobil SHC Grease 681 WT	2000	2200	1.15
VKA	Wear Scar DIN 51350 Part 3	Mobil SHC Grease 681 WT – modified with Rewitec	2400	2600	1.16

Advantages with **REWITEC**:

- ⇒ 17 % higher non seizure load
- ⇒ 15 % higher weld load

Smart science to improve lives™

MTM test bench - grease test

⇒ Load:	70 N
	23°C
⇒ Time:	172 s

700 mm/s

⇒ Up to 38 % friction reduction with Rewitec

False-Brinelling test – For pitch bearing evaluation

- ⇒ Frequency:
- ⇒ Oszillation angle:

Fuchs LX460

pre-damaging (1.3 h; +/- 0.5°)

25 Hz

- +/- 0.5° -> +/- 3.0°
- 3 kN to 4 balls (750 N per ball)
- room temperature

ARKL Type 51206 with 4 rolling elements

Fuchs LX460 Fuchs LX460 + **REWITEC™**

Run after the damaging (3 h; +/- 3°)

on the basis of a decision by the German Bundestag

Test specimen

Smart science to improve lives[™]

⇒ Wear development on a Bosch Rexroth gear tooth (GE 1.5 SL) over a period of two years

Smart science to improve lives™

- Run through marks on the tooth flank after 6 weeks and 2 years:
 - Reduction of the surface roughness and friction force

 - \Rightarrow Less stress for the tooth flank

➡ Wind turbine gearbox CSIC 2 MW VSCF

⇒ Significant operational wear visible
⇒ In the foot area visible micro pitting
⇒ Oxidation visible

- ⇒ Operational wear noticeable reduced
- ⇒ The contact pattern is optimized

Coating and analysis of a main bearing (outer ring) GE 1.5 wind turbine

⇒ Picture: Before wind turbine was treated with REWITEC[™]

⇒ Picture: 5 months after wind turbine was treated with REWITEC[™]

⇒ Picture: 12 months after wind turbine was treated with REWITEC[™]

Coating and analysis of a main bearing (outer ring) GE 1.5 wind turbine

- treated with REWITEC[™]
- \Rightarrow Ra = 0,556 µm (within the track)

Smart science to improve lives[™]

- was treated with REWITEC[™]
- \Rightarrow Ra = 0,403 µm (within the track)

- was treated with REWITEC[™]
- \Rightarrow Ra = 0,225 µm (within the track)

Main bearing (outer race) GE 1.5 wind turbine

⇒ Before wind turbine was treated with REWITEC[™]

G months after wind turbine
 was treated with REWITEC™

Coating and analysis of a main bearing GE 1.5 wind turbine

Roughness	Before	After	Difference
S _a	3.00 µm	1.47 µm	- 51 %
Sz	56.7 µm	19.8 µm	- 65 %
R _a	0.789 µm	0.600 µm	- 24 %
R _z	4.10 µm	3.38 µm	- 18 %

RODA.

Coating and analysis of a main bearing GE 1.5 wind turbine

Roughness	Before	After	Difference
S _a	0.266 µm	0.159 µm	- 40 %
Sz	22.2 µm	11.6 µm	- 48 %
R _a	0.145 µm	0.064 µm	- 56 %
R _z	1.31 µm	0.767 µm	- 41 %

Wind turbine 1.5 MW GE 1.5 SLE Planet Bearing

PLANETARY BEARING MEASUREMENT PRE- TREATMENT IS IN BACK, POST IS IN THE FOREGROUND

Smart science to improve lives[™]

Wind turbine 1.5 MW GE 1.5

⇒ Before REWITEC[™] treatment

⇒ After REWITEC[™] treatment

Sentient Science

Lifetime Calculation Model by using REWITEC[™]

<u>CRODA</u>

Smart science to improve lives"

Sentient Science Lifetime Calculation

⇒ Calculation based on bearing geometry, friction coefficient and surface topography:

Sentient Science Lifetime Calculation

⇒Mainshaft Bearing Life Extension by REWITEC[™] GR400 Grease using Sentient Science' DigitalClone[®]

⇒Results:

- Significant reduction in the probability of failure of a main bearing by REWITEC[™]
- Less roughness¹
- More even load distribution
- Lower local pressure/stress
- ⇒ The earlier the application, the greater the effect

Conclusion

Smart science to improve lives™

Conclusion

Less surface roughness, friction and temperature in the drive train system means:

- Less stress and wear for the gearbox and bearings
- ⇒ Less stress for the lubricants
- ⇒ Repairing and protection effect
- ⇒ Higher efficiency
- ⇒ Higher reliability and availability, no downtime
- ⇒ Significant lifetime improvement
- ⇒ Cost savings, higher earnings

Our services

Part of Croda International Plc

If you need more support – Please contact us.

REWITEC GmbH Dr.-Hans-Wilhelmi-Weg 1 35633 Lahnau Germany

Tel.: +49 6441 445990 E-mail: rewitec.info@croda.com www.rewitec.com

Smart science to improve lives™

CRODA