

INTRODUCING MICROTRAC MRB

A new leader in particle characterization

Light Scattering – Image Analysis – Gas Adsorption

Dr. Daniel Hagmeyer

(Int. Product Management & Application LD / DLS)

part of VERDER

part of **VERDER** scientific

ORGANIZATION CHART SCIENTIFIC DIVISION

MICROTRAC MEB

ORGANIZATION CHART

PARTICLE ANALYSIS TECHNIQUES

MICROTRAC MEB

MICROTRAC MRB BUSINESS UNITS & TECHNOLOGIES

MICROTRAC MEB

Particle Size:

- 1nm 4 mm
- Technology: Laser Diffraction, Dynamic Light Scattering
- Site: Montgomeryville, PA, USA

Particle Size & Shape:

- 0.5 µm 135 mm
- Technology: Dynamic and Static Image Analysis
- Site: Haan, Germany

Surface and Porosity:

- Technology: Gas Adsorption
- Site: Osaka, Japan

PARTICLE ANALYSIS TECHNIQUES

© Microtrac MRB 7

part of VERDER

scientific

MICROTRAC MRB BUSINESS UNITS & TECHNOLOGIES

MICROTRAC MEB

Particle Size:

- 1nm 4 mm
- Technology: Laser Diffraction, Dynamic Light Scattering
- Site: Montgomeryville, PA, USA

Particle Size & Shape:

- 0.5 µm 135 mm
- Technology: Dynamic and Static Image Analysis
- Site: Haan, Germany

Surface & Porosity:

- Technology: Gas Adsorption
- Site: Osaka, Japan

LASER DIFFRACTION

How it works:

- Electromagnetic waves (light) show • diffraction when interacting with matter. Superposition of the waves (interference) leads to amplification or extinction.
- The phenomenon can be observed with • grids, slits, apertures and PARTICLES.

Advantages:

- Wide measuring range .
- Fast
- Versatile •

Diffraction angles depend on wavelength and particle size

DIFFRACTION ANALYZER: SYNC

Advantages:

- Wet and dry analysis
- Easy change of modules
- Camera for additional image information
- 3 configurations: 2R, 3R, 1R2B

PARTICLE SIZE AND SHAPE: LASER DIFFRACTION AND DYNAMIC IMAGE ANALYSIS

MICROTRAC MEB

Two fixed photoelectric detector arrays

- 0,02 to 163°
- 151 Detector-Segments

Laser wavelength:

780 nm (red), 405 nm (blue)

Available Configurations:

- 3 red lasers
- Laser 1 red / Laser 2 & 3 blue
- 2 red lasers

Microtrac's innovative **modified Mie scattering theory** produces accurate particle size distributions for both spherical and nonspherical particles.

SYNC – IMAGE ANALYSIS

MICROTRAC MEB

- 5.2 Megapixel camera with 22-60 fps
- Realtime visualization of particles during the measurement
- Reporting of graphical and tabular size and shape data
- More than 30 size and shape parameters: width, length, area equivalent diameter, circularity, aspect ratio, compactness, sphericity, roundness, convexity etc....
- Powerful search and filter options
- Two camera resolutions available (high-range and low-range)

DATA ACQUISITION

MICROTRAC MEB

WET & DRY DISPERSION

MICROTRAC

DYNAMIC LIGHT SCATTERING

MICROTRAC MEB

part of **VERDER**

scientific

Nanotrac Wave II

- Size 0,3 nm 10.000 nm
- Zeta potential
- Flow cell for titrations
- Compliant to DIN ISO 22412:2017

Nanotrac Flex

- Size 0,3 nm 10.000 nm
- External probe: in-situ analysis
- Online capability
- Multiple probe lengths
- Compliant to DIN ISO 22412:2017

Dynamic light scattering is used to measure NANOPARTICLES! Proteins, nano-metals, org. macromolecules, inks, pigments etc.

©M

DYNAMIC LIGHT SCATTERING

How it works:

- DLS measures Brownian Motion of small particles in a suspension
- Diffusion coefficient (D_t) is related to particle size (d_h) by the Stokes-Einstein Equation: $p = \frac{kT}{r}$

$$D_t = \frac{\kappa I}{3\pi \eta d_h}$$

MICROTRAC MEB Detector Reflected laser beam & Scattered light Y beam splitter **GRIN** lens Laser beam in optical fibre aser Iterative Particle Size Calculation from Power Spectrum 10 nm + 140 nm 140 nn 10 nm d (nanometers OGAR THMIC FREQUENCY CHANNEL

 1. Estimate size distribution
 4. Correct estimated distribution

 2. Calculate estimated particle size
 5. Repeat 1-4 until error is minimized

 3. Calculate error in particle size
 6. Minimum error distribution is best fit

APPLICATIONS LASER ANALYZERS

part of VERDER scientific

BUSINESS UNITS & TECHNOLOGIES

MICROTRAC MEB

Particle Size:

- 1nm 4 mm
- Technology: Laser Diffraction, Dynamic Light Scattering
- Site: Montgomeryville, PA, USA

Particle Size & Shape:

- 0.5 µm 135 mm
- Technology: Dynamic and Static Image Analysis
- Site: Haan, Germany

Surface and Porosity:

- Technology: Gas Adsorption
- Site: Osaka, Japan

DYNAMIC IMAGE ANALYSIS (DIA)

MICROTRAC MEB

ys 3489 4677 0.6081 0.8691 0.7529 1.2902 1.762

1 5743 2 5438 1 9829 2 8244 2 8321 3 7444 3 7344 4 5025 3 8082 4 6528 3 7344 3 7344 4 5025 3 8082 4 6528 5 9310 6 6 8588 6 6 8588 6 7,7105 7 82278 8 5226 9 91032 9 9210 9 9,7344 10,4937

 $\begin{array}{c} 0.2126\\ 0.4872\\ 0.2972\\ 0.2767\\ 0.2972\\$

 $\begin{smallmatrix} 0 & 12269 \\ 0 & 22342 \\ 0 & 42540 \\ 0 & 42540 \\ 0 & 42540 \\ 0 & 42542 \\ 0 & 16668 \\ 0 & 22342 \\ 0 & 16668 \\ 0 & 22342 \\ 0 & 12237 \\ 0 & 22342 \\ 0 & 12237 \\ 0 & 2342 \\ 0 & 2$

 $\begin{array}{c} 10.90.28\\ 9.85.70.28\\ 9.85.70.28\\ 9.85.70.28\\ 9.85.70.28\\ 9.95.70.28\\ 9$

How it works:

- Stream of particles
- In front of illuminated background
- Shadows of particles detected by the cameras

Advantages:

- Wide dynamic range thanks to Dual Camera Technology
- Fast: 2 3 minutes
- · High sensitivity for oversize and undersize
- Results comparable to sieve analysis
- Analysis of large number of particle detections: reproducible and meaningful results
- Shape analysis

part of VERDER

scientific

DYNAMIC IMAGE ANALYSIS: CAMSIZER SERIES

CAMSIZER P4

- 20 µm 30 mm
- Dry measurement
- Gravity dispersion
- 60 images / second
- Pourable bulk materials: fertilizer pellets, sugar, dry sand etc.

CAMSIZER X2

- 0.8 μ m 8 mm
- Dry or wet measurement
- Air-jet dispersion
- > 300 images / second
- Agglomerated powders: ground coffee, crushed rock, metal power etc.

CAMSIZER ONLINE

MICROTRAC MBB

CAMSIZER offers unique

advantages for on-line analysis:

- Specifically designed for on-line analysis in harsh, industrial environments
- Patented 3D size and shape
- Integration with plant Data Control System (DCS)
- 100% correlation with sieve analysis
- Self-cleaning, low maintenance
- SOP feature for unattended operation
- Explosion proof (optional)
- Custom, integrated sampling systems returning sample to the process

STATIC IMAGE ANALYSIS: CAMSIZER M1

MICROTRAC MEB

How it works:

- Microscopic evaluation of particles
- Sample is prepared on an object slide
- A moving sample stage is moving the slide along a camera system
- Images are acquired by a high-resolution camera
- The stage is NOT moving during image acquisition

Advantages:

- High accuracy for narrow distributions (within one decade)
- Excellent image quality
- Detailed shape analysis

APPLICATIONS IMAGE ANALYSIS

MICROTRAC

BUSINESS UNITS & TECHNOLOGIES

MICROTRAC MEB

<u>Particle Size:</u>

- 1nm 4 mm
- Technology: Laser Diffraction, Dynamic Light Scattering
- Site: Montgomeryville, PA, USA

Particle Size & Shape:

- 0.5 µm 135 mm
- Technology: Dynamic and Static Image Analysis
- Site: Haan, Germany

Surface & Porosity:

- Technology: Gas Adsorption
- Site: Osaka, Japan

PRODUCT OVERVIEW POROSIMETRY

- BELSORP mini X
- BELSORP max G
- BELSORP max II

• BELCAT II

- BELpycno
- BELpycno L

- BELPORE LP
- BELPORE MP
- BELPORE HP

PHYSI- & CHEMISORPTION

MICROTRAC MRB

FILLING ALL PORES / **ADSORPTION INTO VOIDS**

ADSORPTION / DESORPTION ISOTHERM

Physisorption

- Weak adsorption
- Reversible
- Surface area & pore analysis

Chemisorption

- Strong adsorption
- irreversible •
- Chemical surface reactions (catalysts)

BELSORP SYSTEMS

- 4 samples can be measured simultaneously
- AFSMTM High reproducibility
- Gas dosing optimization (GDO)
- Compact
- Low-cost

BELSORP max G

- Low pressure adsorption
- Suitable for micropore analysis
- AFSMTM High reproducibility
- AFSM II
- Gas dosing optimization (GDO)
- Compact

Specific surface area and pore size analyzer

4 samples can be measured simultaneously

- max. 3 low pressure adsorption ports
- Suitable for micropore analysis
- AFSMTM High reproducibility
- Gas dosing optimization (GDO)
- Vapor adsorption
- High speed evacuation line

OTHER ANALYZERS

MICROTRAC MEB

BELCAT II

- Catalyst evaluation
- TPD·TPR/TPO, Pulse chemisorption, BET single point measurement
- Breakthrough curve
- Compact/reasonable, but high-end model Compact
- Covers BELCAT-B and -A

© Microtrac MRB 28

BELPycno

- Determination of the pure density of solids and powders using the gas displacement method.
- Highly accurate measurement of sample volumes with variable volumes in the measuring chambers.
- The device is easy to use
- one-hand operation
- Touch-Screen

- Determination of the pure density of solids and powders using the gas displacement method.
- Highly accurate measurement of sample volumes with variable measuring chambers.
- The device is easy to use
- one-hand operation

BELPORE

MICROTRAC MBB

BELPORE LP / MP / HP

- Pore size distribution (differential, integral and as histogram)
- Pore volume, porosity
- Particle size distribution
- Bulk density and apparent density
- Frost resistance of concrete
- Compliant to DIN ISO 15901

WHERE IS IT USED?

Catalysts

bon

Adsorbents

Toner

Most customers are related to "POWDERS". ~ 80 % R&D, universities, research organizations

TIMELINE

1987

Rollout of the

MICROTRAC

1974

Microtrac launches the first commercial laser diffraction analyzer, Microtrac Model 7991.

1998

Retsch Technology high-precision gas develops the adsorption instru-CAMSIZER and ment BELSORP-28 its patented dual by MicrotracBEL. camera system.

2002

BELSORP-Dyna.

Premiere of the breakthrough curve measurement system via adsorption column method.

2006

Improvement of CAMSIZER with AutoHeight, LED technology, enhanced software features, improved resolution, sharpness & contrast.

2013

2011

Introduction of MicrotracBEL introduces the CAMSIZER XT with optional modules multi-sample BET for wet and dry surface area measurement system, measurement. BELSORP-MR6.

2018

Launch of the Microtrac Sync: laser diffraction and dynamic image analysis combined in one

instrument.

2019

Retsch Technology launches the CAMSIZER M1. enhancing the product portfolio with a static image analyzer.

2020

Merging of Retsch Technology, Microtrac & MicrotracBEL into Microtrac MRB under the umbrella of Verder Scientific.

Establishing a new leader in particle analysis:

- Fifty million US\$ turnover
- 200 employees •
- Three production sites
- One company

Thank you for your attention!

