

Higher Performance for Gearboxes and Bearings.

WIND ENERGY | AUTOMOTIVE | MARINE | INDUSTRY

Content

- REWITEC[®]
- Tribology
- Products
- Industries
- Examples of applications
- Technology
- Scientific testing
- Practical applications
- Economic efficiency
- Conclusion

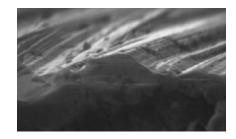
REWITEC® COMPANY AND PRODUCTS

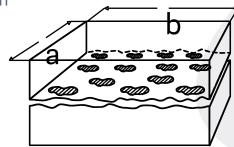
- Developer, manufacturer and distributor of nano and micro particle based surface refinements for protection and repair of tribologic systems (gears/ bearings)
- Establishment in 2003, in the town of Lahnau, in the State/Province of Hessen in Germany
- World wide sales and partner network

• Founder and Managing Partner: Stefan Bill

Tribology, friction, wear

• Tribology:


The science and engineering of interacting surfaces in relative motion. It includes the study and application of the principles of friction, lubrication and wear.


• Friction:

"Outer friction", also known as Solid Body Friction, because it appears between contact surfaces of touching solid bodies. It is devided in static friction, sliding friction and rolling friction.

• Wear:

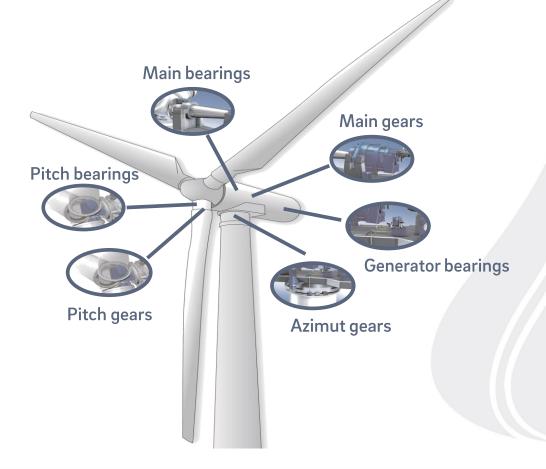
Wear (abrasion) is the mass loss (surface erosion) of a material surface due to grinding, rolling, hitting, scraping, chemical or thermal load.

Products

Target Industries

WIND ENERGY

INDUSTRY


MARINE

AUTOMOTIVE

Examples of application

Treated wind turbines

Turbine manufactrurer	Type of wind turbine
AN Bonus	1.000 kW
DeWind	D4 (600 kW), D6 (1.000 kW), D8 (2.000 kW)
Gamesa	G47 (600 kW)
GE	GE1.5 sl, GE 2.3, GE3.6
Goldwind	750 kW
HSW	1.000 kW
Jacobs	600 kW
NEC Micon	600 kW, 800 kW, 1.000kW
Nordex	N43, N52, N54, N60, N80, S70, S77
REpower	5M
Siemens	1.000 kW, 1.300 kW
Suzlon	Grease applications
Tacke	TW80, TW600, TW1.500
Vestas	V25, V39, V44, V47, V52, V66, V80, V90

Products

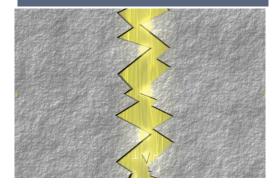
Longer gearbox life with DuraGear® W100

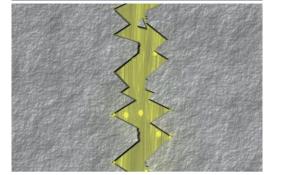
Products

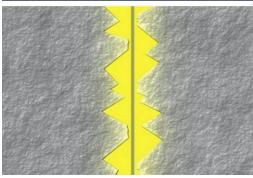
Longer bearing and gear life with GR400

The coating process

Step 1 Chemical-physical process


The product uses the lubricant as carrier to the mixed friction zone


Step 2 Chemical reaction

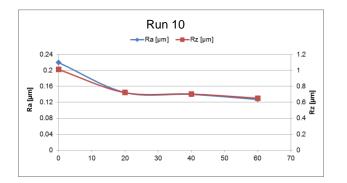

The coating particles ceramize the metal surfaces mixed friction zone

Step 3 New metal-ceramic surface

Original material properties will be improved in terms of friction, temperature and wear significantly

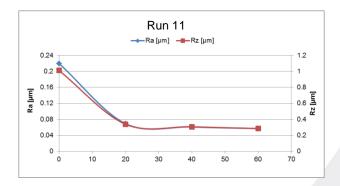
REWITEC® IN ACTION SCIENTIFIC TESTINGS

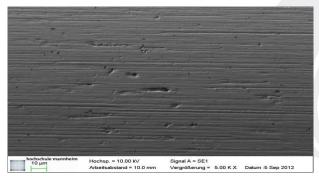
Scientific testings



2-Disc Assembly Rolling Wear Tests


",Tribology is the science and technology of interacting surfaces in relative motion"





Test 10: Agip Blasia 320 without REWITEC®

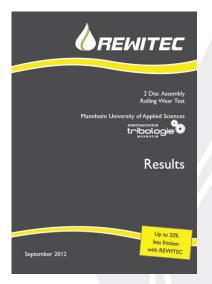


Test 11: Agip Blasia 320 with REWITEC®

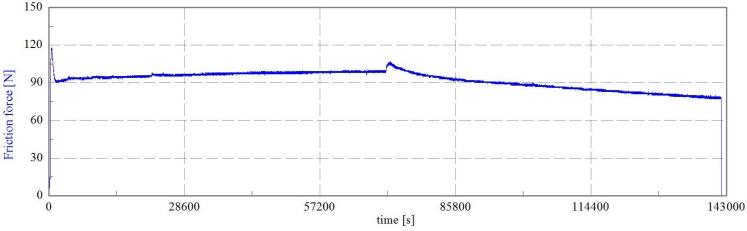
SEM images after the 60 hours testing in 1:1 comparison:

REWITEC® coating

After 60 hours testings of Agip SX320 synthetic oil*:

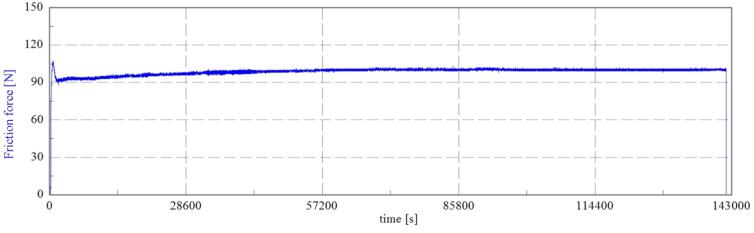

20 % less temperature in gearboxes and bearings*

33 % less friction in gearboxes and bearings*



50 % less roughness on metal surfaces*

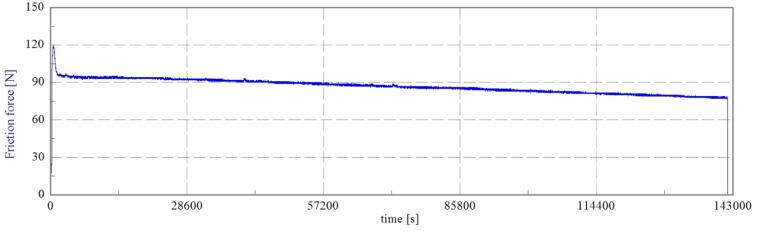
*University Mannheim


REWITEC_1_27-06-2014 | *4.7.2014*

Castrol Optigear X320 with REWITEC[®] added after 19 hours 39 minutes

R_{z, before} = 2,389 μm R_{a, before} = 0,360 μm

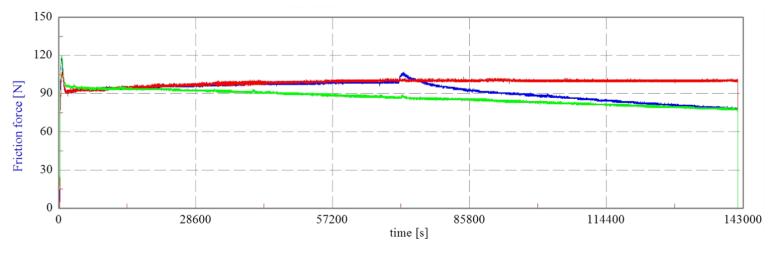
 $\begin{array}{l} {\sf R}_{z,\,{\rm after}} = 1,\!129\;\mu{\rm m}\;(-53\;\%) \\ {\sf R}_{a,\,{\rm after}} = 0,\!180\;\mu{\rm m}\;(-50\;\%) \end{array}$



REWITEC_2_02-07-2014 | *4.7.2014*

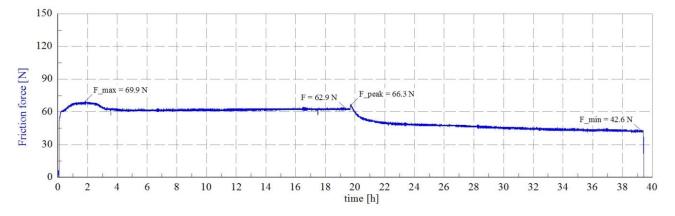
Castrol Optigear X320 without REWITEC®

R_{z, before} = 2,389 μm R_{a, before} = 0,360 μm $\begin{array}{l} R_{z,\,after} = 1,663 \; \mu m \; (-30 \; \%) \\ R_{a,\,after} = 0,285 \; \mu m \; (-21 \; \%) \end{array}$

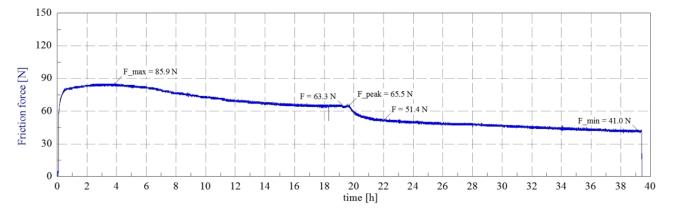


REWITEC_3_04-07-2014 | *4.7.2014*

Castrol Optigear X320 with REWITEC®


R_{z, before} = 2,389 μm R_{a, before} = 0,360 μm $\begin{array}{l} R_{z,\,after} = 1,024 \; \mu m \; (-57 \; \%) \\ R_{a,\,after} = 0,151 \; \mu m \; (-58 \; \%) \end{array}$

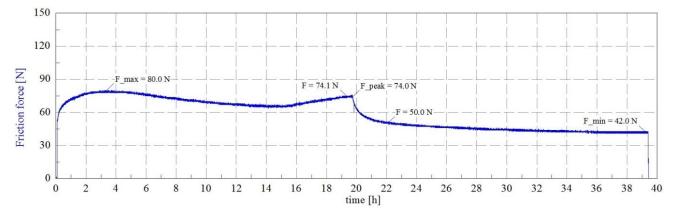
- Red graph without REWITEC®
- Blue graph with REWITEC[®] added after 20 hours
- Green graph with REWITEC[®] added at the beginning
- Reduction of the surface roughness (Ra) due to wear up to 58 %
- Reduction of the friction force up to 22 %



Castrol Optigear Synthetic X320 with REWITEC[®] added after 19 hours 39 minutes

Rz before= 2,00 µm Ra before= 0,22 µm Rz after= 1,52 µm (-24 %) Ra after= 0,129 µm (-41 %)

- Reduction of the surface roughness (Ra) up to **41** %
- Reduction of the friction force up to **36** %



Mobilgear SHC XMP 320 with REWITEC[®] added after 19 hours 39 minutes

Rz before= 2,00 μm Ra before= 0,22 μm Rz after= 1,18 µm (-41 %) Ra after= 0,123 µm (-44 %)

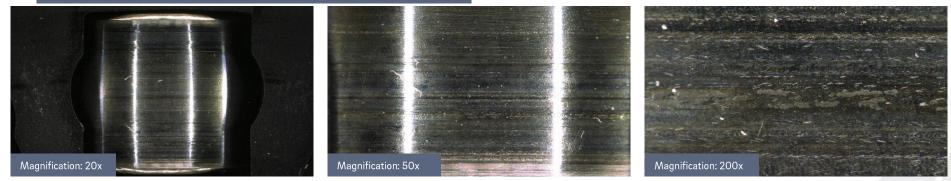
- Reduction of the surface roughness (Ra) up to 44 %
- Reduction of the friction force up to **37** %

Klübersynth GEM 4-320N with REWITEC[®] added after 19 hours 39 minutes

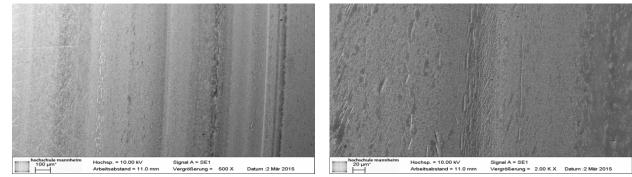
Rz before= 2,00 μm Ra before= 0,22 μm Rz after= 0,91 µm (-55 %) Ra after= 0,100 µm (-54 %)

- Reduction of the surface roughness (Ra) up to **54** %
- Reduction of the friction force up to 43 %

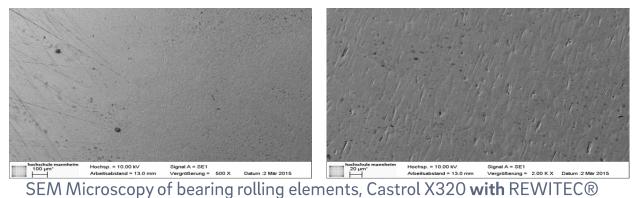
Scientific testings


Competence Center of Tribology Mannheim-Germany

REWITEC[®] on the roller bearing test rig FE-8

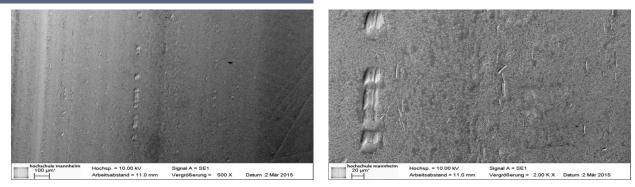


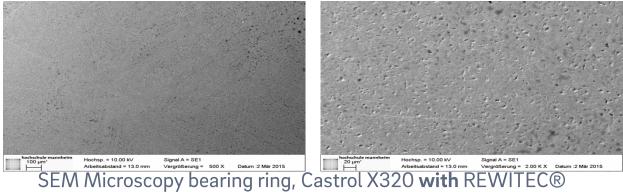
Microscopy bearing rolling elements, Castrol X320 without REWITEC®



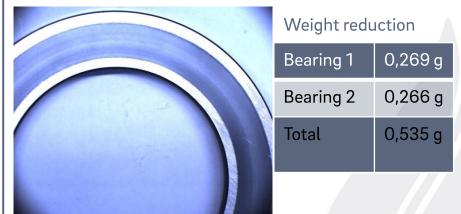
Microscopy bearing rolling elements, Castrol X320 with REWITEC®

SEM Microscopy of bearing rolling elements, Castrol X320 without REWITEC®




Microscopy bearing ring, Castrol X320 without REWITEC®

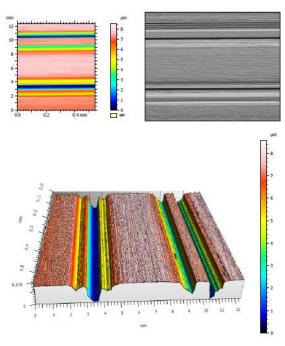
SEM Microscopy bearing ring, Castrol X320 without REWITEC®



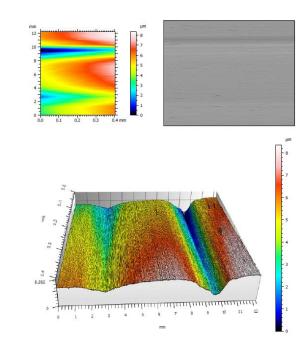
Results: Test 1: Castrol X320 without REWITEC[®]

Weight reduction 0,318 g 0,326 g 0,644 g

Test 2: Castrol X320 with REWITEC®


Evaluation:

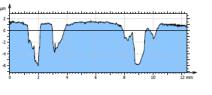
- 17% less wear with the REWITEC[®]- concentrate
- Smoother surface


Scientific testings FE-8 test Synthetic Wind Turbine Oil, NanoFocus AG

Results:

Test 1: Castrol X320 without REWITEC®

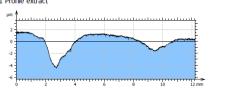
Test 2: Castrol X320 with REWITEC®



Scientific testings FE-8 test Synthetic Wind Turbine Oil, NanoFocus AG

Results:

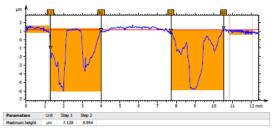
Test 1: Castrol X320 without REWITEC®


1 Profile extract

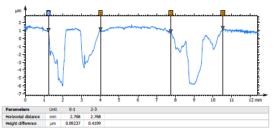


ISO 4287						
Amplitude parameters - Roughness profile						
Ra	1.348	μm	Robust Gaussian filter, 1.2 mm	Arithmetic Mean Deviation of the roughness profile.		
Rz	3.704	μm	Robust Gaussian filter, 1.2 mm	Maximum Height of roughness profile.		
Rt	7.714	μm	Robust Gaussian filter, 1.2 mm	Total Height of roughness profile.		
Rp	1.238	μm	Robust Gaussian filter, 1.2 mm	Maximum Peak Height of the roughness profile.		
Rv	2.466	μm	Robust Gaussian filter, 1.2 mm	Maximum Valley Depth of the roughness profile.		
Rq	1.636	μm	Robust Gaussian filter, 1.2 mm	Root-Mean-Square (RMS) Deviation of the roughness profile.		
Rsk	-0.416		Robust Gaussian filter, 1.2 mm	Skewness of the roughness profile.		
Rku	2.157		Robust Gaussian Alter, 1.2 mm	Kurtosis of the roughness profile.		

Test 2: Castrol X320 <u>with</u> REWITEC[®]

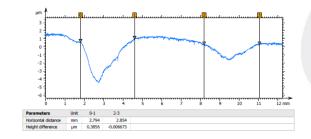

ISO 4287						
Amplitude parameters - Roughness profile						
Ra	0.7597	μm	Robust Gaussian filter, 1.2 mm	Arithmetic Mean Deviation of the roughness profile.		
Rz	1.525	μm	Robust Gaussian filter, 1.2 mm	Maximum Height of roughness profile.		
Rt	6.914	μm	Robust Gaussian filter, 1.2 mm	Total Height of roughness profile.		
Rp	0.8372	μm	Robust Gaussian filter, 1.2 mm	Maximum Peak Height of the roughness profile.		
Rv	0.6877	μm	Robust Gaussian filter, 1.2 mm	Maximum Valley Depth of the roughness profile.		
Rq	0.8424	μm	Robust Gaussian filter, 1.2 mm	Root-Mean-Square (RMS) Deviation of the roughness profile.		
Rsk	0.5340		Robust Gaussian filter, 1.2 mm	Skewness of the roughness profile.		
Rku	1.494		Robust Gaussian filter, 1.2 mm	Kurtosis of the roughness profile.		

Scientific testings FE-8 test Synthetic Wind Turbine Oil, NanoFocus AG

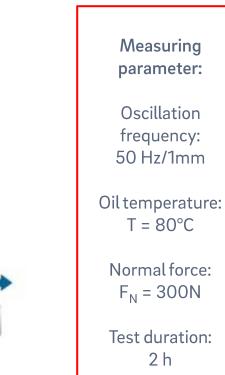

Results:

Test 1: Castrol X320 without REWITEC®

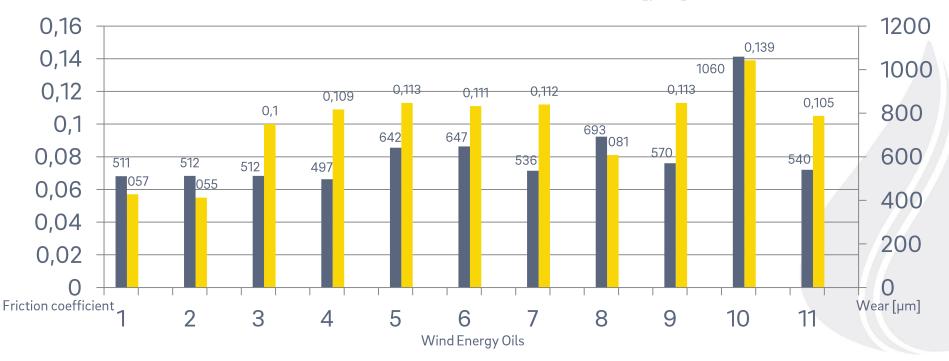
Step height

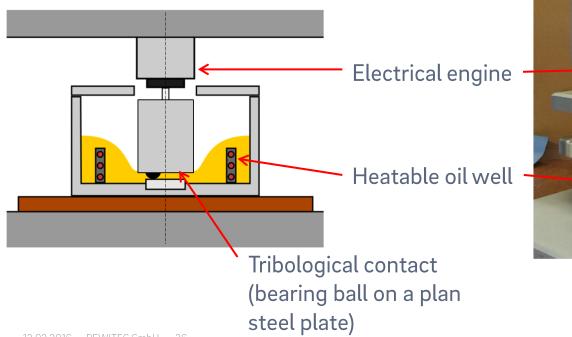


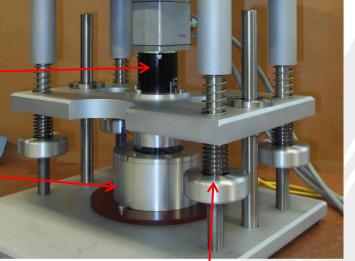
Test 2: Castrol X320 with REWITEC®


Distance measurement

Competence Center of Tribology Mannheim-Germany

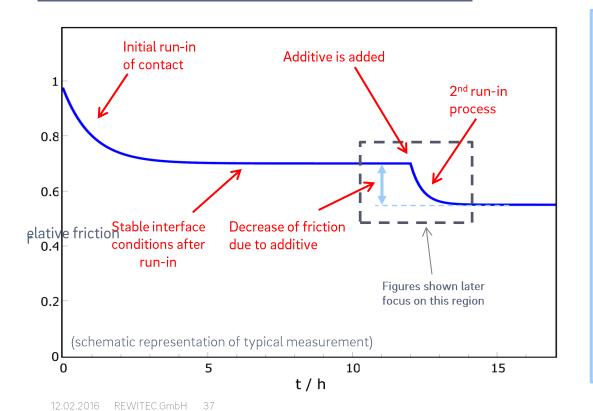

Various synthetic wind turbine oils on the SRV-Test Bench


■ Mean friction coeffient ■ Wear [µm]



Scientific testings Pin-on-disc test – Synthetic Gear oil

Micro Tribometer

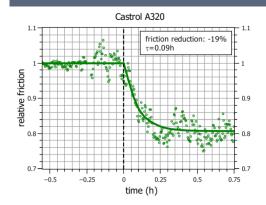


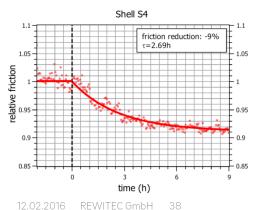
Spring system to adjust normal force

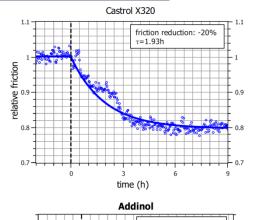
Scientific testings Pin-on-disc test – Synthetic Gear oil

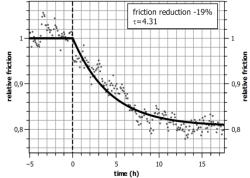
Measurement procedure:

I. Run-in of the contact until stable interface conditions are established


II. Additive is added

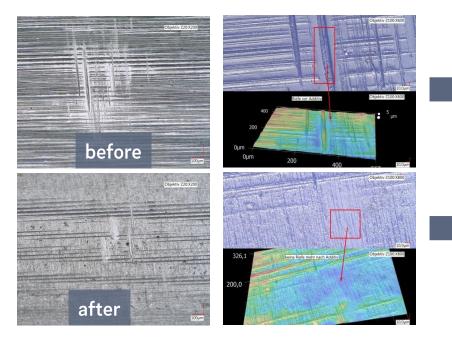

III. "2nd Run-in": improved tribo-contact is developed due to additive effects


IV. New stable interface conditions are established


V. Difference of friction levels before and after additiv addition: Reduction of friction due to additive

Scientific testings Pin-on-disc test – Synthetic Gear oil

Measuring parameter: Rotation speed: 1500 U/min Oil temperature: $T = 70^{\circ}C$ Normal force: $F_{N} = 20N$

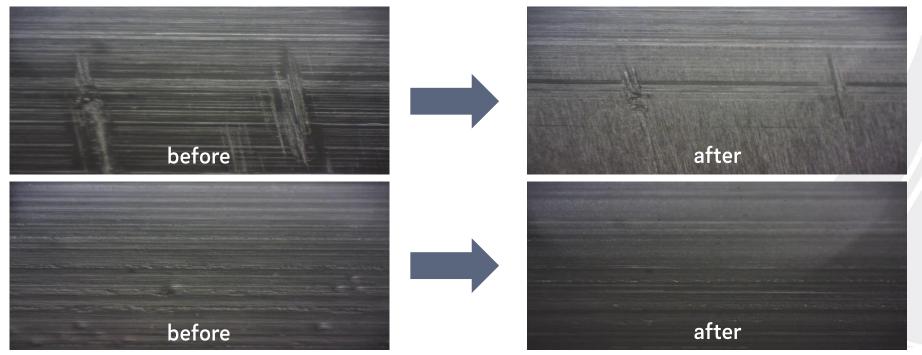


WIND ENERGY | AUTOMOTIVE | MARINE | INDUSTRY EXAMPLES OF APPLICATION

Examples of application:

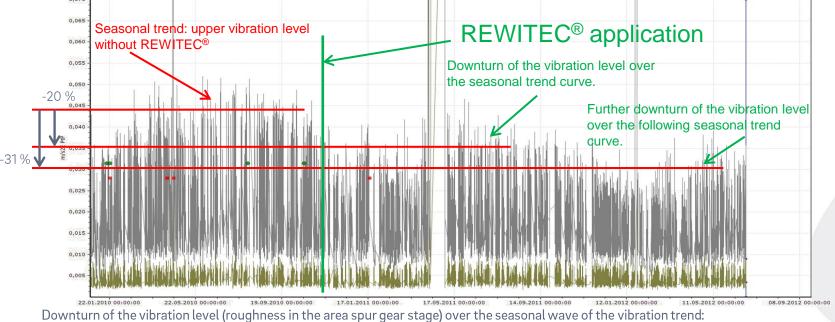
Coating and analysis of a wind turbine gearbox GE 1.5 SL

Pitting on the tooth flank


Pitting on the tooth flank after 6 weeks:

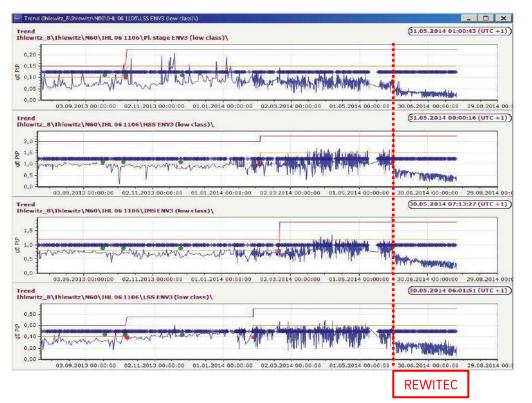
- Less stress for the tooth flank
- Reduction of the surface roughness and friction force
- Improved load carrying capacity

Examples of application:


Coating and analysis of a wind turbine gearbox GE 1.5 SL

Examples of application:

Coating of a wind turbine gearbox Tacke TW600 (Condition Monitoring by CMC GmbH)


Downturn of the vibration level (roughness in the area spur gear stage) over the seasonal wave of

- * I. Reduction of the vibration level up to 20 %
- + II. Reduction of the vibration level up to $31\,\%$

12.02.2016 REWITEC GmbH 42

Examples of application

Goal of application:

- Wear protection of a N60 gearbox due to the use of REWITEC[®] coating concentrat in May 2014
- Analysis via SKF Maintenance Services GmbH
- Protection against further wear and prolongation of lifetime

Results after 2 months:

 The report shows a significant difference. A stop of the high level vibration decrease of the damage frequency in the toothing

Economic efficiency calculation

Economic efficiency calculation of the REWITEC® treatment Replacement costs of a WT gearboxes before using REWITEC®: $100.000 \notin$ per gearbox * 1,5 gearbox/year * 5 year = 750.000 \notin Costs for 3 REWITEC® treatments within five years: $3*2.500 \notin$ /turbine= 7.500 \notin /turbine 7.500 \notin /turbine * 25 turbines= 187.500 \notin Costs savings by REWITEC®: 750.000 \notin - 187.500 \notin = 562.500 \notin

M B T GmbH - Compagnie 2 - D-24405 Mohrkirch	D-24 405 Mohrkirch
Rewitec GmbH	Compagnie 2
Stefan Bill	Telefon 04646 / 1003
Dipl. Ing.	Telefax 04646 / 416
Managing Director	E-Mail: Claus.Marxen@t-online.de
Dr-Hans-Wilhelmi-Weg 1	Bankverbindung:
D-35633 Lahnau	Schleswiger Volksbank e.G. Konto: 80 91030 BLZ: 216 900 20
bisherige Erfahrungen mit REWITEC bei den von uns	IBAN: DE85 2169 0020 0008 0910 30 BIC: GENODEF1SLW
verwalteten 25 Windenergieanlagen des Typs TW 600 /e + a Anlagen	Steuernummer: 15 293 13 994 Umsatzsteuer-IdNr.: DE 163691871
	HRB 340 KA Amtsgericht Flensburg Geschäftsführer: Claus Marxen

Sehr geehrter Herr Bill,

seit Mitte 2010 haben wir das Produkt Rewitec in den von uns verwalteten TW 600 er Anlagen verwendet.

Datum: 09. Februar 2015

Seit dieser Zeit haben wir keinen Getriebeschaden mehr an den TW 600er Anlagen, welche per heute eine Betriebslaufzeit von ca. 18 bis 20 Jahren haben, zu verzeichnen.

Vor der Rewitec - Erst Befüllung hatten wir im Schnitt ca. 1 – 2 Getriebewechsel im Jahr (ab dem 10 Betriebsjahr) zu beklagen.

Wir stellen somit fest, dass sich der Rewitec-Einsatz für die von uns betreuten Windenergieanlagen mehr als bezahlt gemacht hat. Entsprechende Getriebeuntersuchungen bei den Anlagen bestätigen zudem immer wieder die ausgesprochen gute Oberflächenbeschaffenheit der Getriebereibungspunkte wie Zahnflanken, Kugelrollen, etc.!

Da ein Getriebetotalschaden sich leider nicht mit einem festen Datum definieren lässt, kann man zu den o.g. Fakten auch noch erwähnen, dass sich der Einsatz von Rewitec bei einer TW 600er Anlage mit einem monatlichen Ertrag von ca. 5000 Euro schon nach ca. 2 Wochen verlängerter Lebensdauer rechnet. Da wir bereits seit über 4 Jahren keine Schäden mehr verzeichnen, erübrigt sich eine weitere Zeitreihendarstellung.

In Zahlen ausgedrückt:

Vor dem Einsatz von Rewitec schlug jeder Getriebewechsel mit ca. 100.000 Euro zu buche. Da wir nach dem Einsatz mit Rewitec keine Getriebeschäden mehr hatten, wurden diese Kosten komplett eingespart. Die Kosten von Rewitec alle zwei Jahre für je 2.500 Euro je WEA sind somit mehr, als nur eine sinnvolle Investition.

Mit freundlichen Grüßen

MBT Marxen Bauträger GmbH

Customer Statements

"REWITEC[®] pays off!"

In dealing with the REWITEC[®] products, experience has shown that the wear of our wind turbines is significantly delayed. In most cases, the progressive damage in certain gearboxes and bearings with pre-mechanical damage was even eliminated. REWITEC[®] is an integral part of our maintenance tasks and saves us a large part of wear-related repairs.

Jochen Holling, Mechanical Engineer - Global Technical Support and Engineering, Availon GmbH

Customer Statements

"We use REWITEC[®] successfully in our wind power and biogas plants. An investment that pays off for the operator. The positive results have encouraged us to even make the protective coating of gears and internal combustion engines prophylactic. Those who want to protect their investments in the long term against damage, can not ignore REWITEC[®]! " Markus Nass / Head of Sales and Service; ABO Wind AG, Heidesheim

"We as a service company must stand up straight for long life and high availability of our customers' plants. REWITEC[®] has specifically shown in treated gears and bearings that in terms of wear protection, everything works well, and everyone involved has a concrete benefit from it! " Denise Koch, CSO Energy GmbH, Leisnig

Recommendations, partners and customers

AT A GLANCE

12.02.2016 REWITEC GmbH 48

Less friction and temperature in the tribologic system means:

- Less stress and wear for the gearbox and the bearings
- Higher efficiency
- Less stress for the lubricants
- Higher realiability and availability, no downtime
- Cost savings, higher earnings

Many thanks FOR YOUR ATTENTION

12.02.2016 REWITEC GmbH 50

REWITEC GmbH

Dr.-Hans-Wilhelmi-Weg 1

35633 Lahnau, Deutschland

Telefon: +49 (0) 6441 / 445 99-0 E-Mail: info@rewitec.com www.rewitec.com Made in Germany

Visit us on Facebook or YouTube.