

Oberflächensensorik mit hoher räumlicher Auflösung Mittels Whispering Gallery Modes

Netzwerktreffen Tribologie, Bad Sachsa 11.03.2022

- L. Dähne, M. Olszyna, G. Dähne,
- M. Himmelhaus,
- C. Guernth-Marschner, M. Kirschbaum,

Surflay Nanotec GmbH NanoBioAnalytics Fraunhofer Institute for Cell therapy and immunology (ICI)

The Companies

Surflay (Surface Layers) founded 2008 in Berlin

- Privately owned Research company, no investors
- 2022: 9 scientists, 1 technician
- Interdisciplinary team: Polymer-, Synthetic-, and Physical Chemists, Pharmacist, Biotechnologists, Engineer
- Surface (bio-) functionalization by Layer-by-Layer LbL-technology
- Monodisperse Nano- and microparticles; Microsensors for pH, T, O₂
- Microsensors for solvent traces in water
- Fluorescence labeled polymers and biomolecules

Controlled complex formation:Layer by Layer (LbL-technology)

Charged Substrate (planar, colloidal, porous, surface structured)

Polycation in excess, aqueous solution 1g/l, Control of pH, ion strength

Self-limited adsorption, charge reversal (ζ -potential + 60 mV), removal excess polyelectrolyte

Polyanion in excess

Thickness per double layer **3 nm** for PAH/PSS

Layer by Layer (LbL) G. Decher 1991, reviewed in coated substrate Science 277 (1997) 1232 Outermost layer highly charged and hydrated ³

Layer-by-layer coating of the HyperCL

- A labelled coating polymer was applied
 - Uniformly distributed 12 nm layer
 - The polymer penetrates slightly the CL
 - charged drugs for embedding

IR Processories 2429

Selected LbL Applications: Hair coloration (P&G)

Covalent linkage of different dyes with polycations
4 layers on hairs (two polycations) after washing

Selected LbL Applications: Friction (Optimol)

- different layer combinations:
- due to high osmotic pressure less friction in water

Particle preparation (Polystyren, PMMA, MF) REM

CLSM

80	2,0µm	400	3,5µm	5,	0μლ 🖉	6,3µr	η 2	9-12µm	Ň
	₩	600 D	80		ACCA				4
		8			2020				6
8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6-2998 ³⁻	RA	20202	XX	5×C		2
	See .	and a	88%		2222	- XOX			4
- 886	8	0 µm 10		10	0_µm_10	XCH	010	0 µm	10

→ PS-Partikelgrößen (monodispers) : 100nm – 100 µm

LbL-immobilized pH and oxygen sensors (Glas of Prof. Enke, Leipzig)

Fluorescence of porous Glas-Slights (20x8x0.5 mm³ coated with PEI-HPTS/PSS from pH2 til pH9

PEI-HPTS

10 µm

Fluorescence: internal coated porous **Reference necessary:** SiO₂-Particles Adding Cy5 dye pH independent

Label free analysis of specific Interactions on surfaces

- Surface Plasmon Resonance (SPR)
- Biacore, Chips 60 400 €
- Quartz Crystal Microbalance
- Chipsensor 25-100 €

-Ellipsometry

- large planar surface
- Reflection Interferometry RIFs
- smaller planar tips

Miniaturization of sensor??

Analyte solution

Planar wave on gold coated Surface area, area 16 mm²

Very old Idea

Ancient times: FLAT is good

Kopernikus: ROUND is better

Transformation of planar in circular waves
 → Whispering Gallery Modes WGM

Principle Whispering Gallery Modes (WGM)

<u>WGM:</u> Reflexion and Interference from waves in circular cavities of high RI

<u>Acoustic waves:</u> Middle age: Secret listening of important talks Saint Pauls Cathedral London;

<u>Optical waves:</u> smaller circular space Light wave totally reflected inner surface, → only resonant waves circulates

How to immobilize light waves into media of higher refractive index:

a) Tunneling, b) Low Q WGM in fluorescent particles

Analyte Solution

> Surface area of 10 µm Particle 0.0006 mm² (SPR 16 mm²)

- \rightarrow Tiny sensors \rightarrow measurements in small cavities
- \rightarrow No connection to measuring unit necessary \rightarrow simple use of microfluidic
- \rightarrow Very small amount of analyte molecules needed

12

Measured signal

- ➢ FWHM WGM peaks 150 pm for 10 µm particle
- Shift for monomolecular (antibody) coverage around 400 800 pm
- Instrumentation for measuring (WhisperSense) resolution 6-10 pm

Further Miniaturization??

WGM Spectra of different bead diameter

Instrumentation "WhisperSense" (Surflay, NanoBioAnalytics)

Box (25 cm x 30 cm x 58 cm) integrates excitation laser, spectrometer, camera, computer and automatic xyz stage; Wavelength resolution 6-10 pm

Application Examples:

Stepwise Layer-by-Layer Coating of approx.1 nm thick polymer layers + final complete removal of layers Coupling of antibody anti-Biotin (25 µg/ml) on biotinylated surface

Typical adsorption kinetics as for SPR or QCM

Application: Release of polymers/drugs from surfaces

Difficulty: Immobilisation of sensor particles

- → Even for apparently monodisperse particles: Each particle has individual WGM pattern
- → measurement on **one and same** sensor particle necessary
- \rightarrow Requires immobilisation of 10 µm particles in analyte stream

Possible (microfluidic) approaches:

- 1. Micropipettes
- 2. Pillar structures
- 3. Laser tweezer
- 4. Dielectrophoretic immobilization
- 5. Well arrays
- 6. Water droplets in oil phase
- 7. Between cells in cell culture

1. Micropipettes

Micropipettes

I II III

PDMS too soft, Contact phase to particle too large

→ Disturbing WGM signal

2. Pillar blocking structures

- Pillars of PDMS too weak
- Stream from backside
- Removal of used particles not possible by backflushing

3. Laser Tweezers

100 µl / h	200 µl / h	300 µl / h	400 µl / h
0	0	- 0	-
3		\equiv	\equiv

Continuous long term measurement

4. Dielectrophoretic immobilisation

Arrangement of electrodes for particle sorting

Dielectrophorese-Chip

- Dielectrophorese chip for continuous particle handling
- Electrode structures for particle handling
- Separate switch On/Off

Dielectrophoretic immobilisation

Possible Flux rates

Flux rates limited, approx. 20 times less than Biacore

Multiplexing: Immobilisation of particles in microfluidic well arrays

Bottom Stratec Consumables GmbH Excellent structures, d = 12 μm 1 000 well array

500 µm x 500 µm

Microscopic image of immobilised Beads in cylindric wells, Only 1 particle/well possible

Microfluidic cells

Connection of Stratec Well array with Lids of ChipShop; Laser welding, 6 channels a 1000 sensors → Enables Multiplexing and High statistic safety

Multiplexing: a) bead position, b) bead size 6-12 µm c) fluorescence encoding

Multiplexing by bead position

Requires different beads in defined positions (of STRATEC arrays)

→ New spotting technology of SCIENION enables defined positioning of cells or particles

(Image of spotted WGM particles→

Automatic xy positioning in WGM find particles within the circles)

BMBF Project "ImmunoPlex" with SCIENION and DIARECT

6. WGM beads in droplets

Transmission

Fluorescence

> 200 pL water droplets with partly filled with WGM beads

> Plan: Measurement of released proteins from immobilized single cells (Partner Oksana Shvydkiv, Hans-Knöll Institut Jena)

7. WGM beads in cell arrays and single cells

- ➢ Uptake of 6-7 µm particles from cells possible
- Online measurement of particle uptake in cells (M. Himmelhaus, A. Francois, Biosensors and Bioelectronics, 25 (2009) 418–427)

Summary

- Low Q WGM promising microtechnology for labelfree detection
- Instrumentation developed
- Functional WGM Sensor particle ready
- Biofunctionalization for specific adsorption established
- Microfluidic structures evaluated
- Searching best suited applications

Acknowledgements:

- Dr. M.Himmelhaus (NanoBioAnalytics), Instrumentation
- Dr. I. + A. Prinz STRATEC Consumables GmbH
- Dr. W. Weigel et al SCIENION AG
- BMBF for financing projects "ImmunoPlex" und "ParFluid"

Thank you for your attention of Surflay's work

